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Introduction

Graph theory is a mathematical field in which researchers study the connection between

objects and submit applications widely in scientific areas. In terms of the relation between

graph theory and algebra, intersection graphs of groups were introduced by Csakany and

Pollak in 1969 [CP69] and the topic has been developed until now. One of many milestones

in the progress was the results of Rulin Shen [She10], he showed the diameters of the

intersection graphs of several finite non-simple groups are at most four. This inspired

us to cope with the similar problem for general linear groups for the purpose of finding

exactly values of the diameters of their intersection graphs.

Besides, since most of previous results had been properties of finite groups, we raise

naturally a question of the structure of intersection graphs of infinite ones. Indeed, with

the aim of broadening perspective on infinite general linear groups, we researched the

end-equivalence relation on the set of rays of infinite graphs which are notions created by

the German graph theorist Rudolf Halin [Hal64].

In the dissertation, a more detailed version of our paper [BV21], we show how to

handle the above problems. Regarding the first question, we proved that the precise

value of diameter of the intersection graph of general linear groups is either two or three.

In terms of the infinite groups, we showed that the intersection graph of any general linear

group over an infinite field is one-end.

Here is a more detailed account of this dissertation.

Chapter 1 introduces basic terminologies of graph and group theory. Specially, the

notions and properties of rays and Noetherian groups play the most important role.

In chapter 2, we answer two main questions raise above by giving completed proofs.
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Chapter 1

Background

1.1 Some graph theory

1.1.1 Basic definitions

In the dissertation, we just pay attention to simple undirected graphs defined as follows.

Definition 1.1.1. A (simple undirected) graph Γ is an ordered pair (V , E) comprising:

(i) A non-empty set V called the set of vertices ;

(ii) A set E ⊆ {{u, v} | u, v ∈ V , u ̸= v} called the set of edges .

If {u, v} is an edge of Γ, which means that {u, v} ∈ E , then we call that u and v are

adjacent and often illustrate the relation between them as follows:

u v.

We call Γ finite if it has finitely many vertices. Conversely, if Γ has infinitely many vertices

and edges, then it is called an infinite graph.

Definition 1.1.2. Let Γ = (V , E) be a graph and let u, v ∈ V be two vertices. A path

from u to v is defined to be a sequence of finitely many vertices in which the first and

the last vertices are u and v, respectively, and two consecutive vertices are adjacent as

follows:

u = v0 v1 · · · vn−1 vn = v.

The number n is called the length of the path. A path is called simple if all of its vertices

are distinct. If we do not pay attention to intermediate vertices, then we can write

u v.
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Notation 1.1.3. We do not avoid cases in which the length of a path is zero by permitting

a path of length zero is a vertex. Conversely, any vertex can be seen as a zero-length path.

Definition 1.1.4. Let Γ be a graph. For two paths Γ1 and Γ2 of Γ as follows:

Γ1 : v0 v1 · · · vn−1 vn,

Γ2 : vn = u0 u1 · · · uk−1 uk.

We define the concatenation of Γ1 and Γ2 to be the path

Γ1 ◦ Γ2 : v0 v1 · · · vn u1 · · · uk.

Definition 1.1.5. Let Γ = (V , E) be a graph and let u, v be two vertices. If there are at

least one path from u to v, then the distance from u to v, denoted by d(u, v), is defined

to be the length of the shortest one among such paths. Otherwise, we put d(u, v) = ∞.

A graph Γ = (V , E) is called connected if d(u, v) < ∞ for all u, v ∈ V .

Definition 1.1.6. Let Γ = (V , E) be a connected graph. We define the diameter of Γ,

denoted by δ(Γ), to be the supremum of the set of distances between any two vertices of

Γ, that is

δ(Γ) = sup{d(u, v) | u, v ∈ V} ≤ ∞.

Definition 1.1.7. A graph Γ = (V , E) is called a complete graph if δ(Γ) = 1, which

means that E = {{u, v} | u, v ∈ V , u ̸= v}.

1.1.2 Rays of an infinite graph and the end-equivalence relation

In this subsection, we focus on infinite connected graphs.

Definition 1.1.8. Let Γ = (V , E) be an infinite connected graph. A ray of Γ is an one-

sided countably infinite chain of distinct vertices of V such that consecutive vertices are

adjacent, that is

(vi)i≥0 : v0 v1 · · · vn · · ·.

Definition 1.1.9. Let Γ = (V , E) be an infinite connected graph. Two rays (vi)i≥0 and

(ui)i≥0 of Γ are called disjoint if they have no vertex in common, which means that the

set {vi | i ≥ 0} ∩ {ui | i ≥ 0} is the empty set.
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Definition 1.1.10. Let Γ be an infinite connected graph and let A and B be two sets

of vertices. A finite set of vertices F is said to separate A and B, or equivalently A is

separated from B by F , if any path from an arbitrary vertex in A to some vertex in B

always contains a vertex in F .

Definition and Proposition 1.1.11. Let Γ be an infinite connected graph. Two rays

(vi)i≥0 and (ui)i≥0 of Γ are called end-equivalent , denoted by (vi)i≥0 ≡ (ui)i≥0, if the sets

{vi | i ≥ 0} and {ui | i ≥ 0} cannot be separated by any finite set of vertices of Γ. The

end-equivalence of rays is an equivalence relation on the set of all rays of Γ.

Proof. Let (vi)i≥0 be an arbitrary ray of Γ. By Definition 1.1.10, any finite set that can

separate {vi | i ≥ 0} and itself must contain some vertex of each path of length zero from

vi to itself, for each i ≥ 0. Therefore, the finite set must contain all of vi’s. However, the

set {vi | i ≥ 0} is infinite, so there is not any finite set of vertices that can separate the

ray and itself. As a result, the reflexivity holds.

The symmetry is verified routinely. We claim that the transitivity of the relation also

holds. Let (vi)i≥0, (ui)i≥0 and (ti)i≥0 be three distinct rays of Γ satisfying (vi)i≥0 ≡ (ti)i≥0

and (ui)i≥0 ≡ (ti)i≥0. For arbitrary finite set F of vertices of Γ, it is sufficient to show that

there exists a path from vi to uj for some i, j ≥ 0 such that this path does not contain

any vertex of F . We prove the transitivity as follows.

Fix a finite set F . Therefore, there exists k ≥ 0 such that F ∩ {vi, ti, ui | i > k} = ∅.
By hypothesis, the finite set F ∪ {vi, ui, ti | 0 ≤ i ≤ k} cannot separate {vi | i ≥ 0} and

{ti | i ≥ 0}, which enables us to find a path Γ1 from some vw to some tj such that Γ1

does not contain any vertex of F ∪ {vi, ti, ui | 0 ≤ i ≤ k}. As a result, it must satisfy

w > k and j > k. Similarly, by considering the finite set F ∪ {vi, ti, ui | 0 ≤ i ≤ j}, we
also obtain a path Γ2 from th to ul for some h, l > j such that Γ2 does not contain any

vertex of F ∪ {vi, ti, ui | 0 ≤ i ≤ j}.

(vi)i≥0 : v0 · · · vk · · · vw

Γ1

· · ·

(ti)i≥0 : t0 · · · tk · · · tj · · · th

Γ2

· · ·

(ui)i≥0 : u0 · · · uk · · · · · · · · · ul · · ·
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We consider the path Γ1 ◦ (tz)j≤z≤h ◦Γ2 from vw to ul. Because F ∩{vi, ui, ti | i > k} = ∅,
we have Γ1 ◦ (tz)j≤z≤h ◦ Γ2 does not contain any vertex of F . To sum up, we obtain

(vi)i≥0 ≡ (ui)i≥0. The proof is completed.

Notation 1.1.12. In Definition 1.1.10, if A is a finite set of vertices, we have A is sepa-

rated from A by itself! This means that the reflexivity is violated if the end-equivalence re-

lation is established between finite sets of vertices. In the other words, the end-equivalence

is a characteristic of infinite graphs.

Definition 1.1.13. Let Γ be an infinite connected graph. An end-equivalence class of

rays of Γ is called an end of Γ. We call Γ one-end if Γ has exactly one end. If an end

contains infinitely many disjoint rays, then we say the end to be thick .

We have an equivalent definition of end-equivalence relation in the next proposition.

It is more simple to understand and helpful to use, but we find it difficult to show its

transitivity. Therefore, we use the notion in Definition 1.1.11 to establish the relation

and utilize the following condition to cope with the problem in the final section of the

dissertation.

Proposition 1.1.14. Let Γ be an infinite connected graph and let (vi)i≥0 and (ui)i≥0 be

two rays of Γ. Then two following conditions are equivalent:

(i) (vi)i≥0 ≡ (ui)i≥0;

(ii) there exists a ray (ti)i≥0 such that {vi | i ≥ 0} ∩ {ti | i ≥ 0} are infinite as well as

{ui | i ≥ 0} ∩ {ti | i ≥ 0}.

Proof. (i) ⇒ (ii): If the set {vi | i ≥ 0} ∩ {ui | i ≥ 0} is infinite, then we can choose

ti = vi for every i ≥ 0 to complete the proof for this case.

Otherwise, there is a number k such that {vi | i > k} ∩ {ui | i > k} = ∅. Put

F1 = {vi, ui | 0 ≤ i ≤ k}. By hypothesis, the fact that the finite set F1 cannot separate

{vi | i ≥ 0} and {ui | i ≥ 0} enables us to have at least one path from some vertex

of (vi)i≥0 to some of (ui)i≥0 such that each of them does not contain any vertex of F1.

Among such paths, we choose the shortest path Γ1 from vh1 to ul1 . We obtain three basic

properties of the path Γ1 as follows:

8



(1) It must satisfy that h1 > k and l1 > k because Γ1 does not contain any vertex of

the set F1 = {vi, ui | 0 ≤ i ≤ k};

(2) Γ1 is simple because we can replace Γ1 by a shorter path if it has two repeated

vertices, which in turn contradicts the shortest length of Γ1.

(3) Except the first vertex vh1 and the last vertex ul1 , Γ1 does not contain any vertex of

two rays (vi)i≥0 and (ui)i≥0. In fact, if there exists an intermediate vertex belonging

to either (vi)i≥0 or (ui)i≥0, then we can replace Γ1 by a shorter path. This in turn

contradicts the shortest length of Γ1. Therefore, Γ1 ∩ {vi, ui | i ≥ 0} = {vh1 , vl1}.

v0 · · · vk · · · vh1

Γ1

· · ·

u0 · · · uk · · · ul1 · · ·

Inductively, for each z ≥ 1, we assume that the path Γz from vhz to ulz was constructed,

we put

Fz+1 = {vi, ui | 0 ≤ i ≤ max{hz, lz}} ∪
⋃

1≤i≤z

Γi.

It is routine to verify that Fz+1 is finite, which enables us to choose a path Γz+1 from

vhz+1 to ulz+1 in the same way of choosing Γ1. Repetition of the above arguments helps

us to show three following conditions:

(1’) hz+1 > max{hz, lz} ≥ hz and lz+1 > max{hz, lz} ≥ lz, for every z ≥ 1;

(2’) Γz is simple for each z ≥ 1;

(3’) Γz ∩ {vi, ui | i ≥ 0} = {vhz , ulz}.

On the other hand, how we set Fz+1 allows us to obtain an additional property:

(4’) Γz+1 ∩ (
⋃

1≤i≤z Γi) = ∅, for every z ≥ 1.

v0 · · · vk · · · vh1

Γ1

· · · vh2 · · · vh3 · · ·

u0 · · · uk · · · ul1 · · · ul2

Γ2

· · · ul3

Γ3

· · ·

Now, we consider the path

(ti)i≥0 := Γ1 ◦ (ui)l1≤i≤l2 ◦ Γ2 ◦ (vi)h2≤i≤h3 ◦ Γ3 ◦ · · · .
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We claim that (ti)i≥0 is a ray, which means that vertices of (ti)i≥0 are distinct. In fact,

for two arbitrary vertices tj and tj′ , there are totally five following general cases.

• Both tj and tj′ belong to (vi)h2≤i≤h3∪(vi)h4≤i≤h5∪· · · ⊆ {vi | i > k}. Because (vi)i≥0

is a ray, tj must be different from tj′ ;

• Both tj and tj′ belong to (ui)l1≤i≤l2 ∪ (ui)l3≤i≤l4 ∪ · · · ⊆ {ui | i > k}. Because (ui)i≥0

is a ray, tj must be different from tj′ ;

• If

tj ∈ (vi)h2≤i≤h3 ∪ (vi)h4≤i≤h5 ∪ · · · ⊆ {vi | i > k}

and

tj′ ∈ (ui)l1≤i≤l2 ∪ (ui)l3≤i≤l4 ∪ · · · ⊆ {ui | i > k},

then it must satisfy tj ̸= tj′ because {vi | i > k} ∩ {ui | i > k} = ∅;

• When tj ∈ Γp \ {vi, ui | i > k} and tj′ ∈ Γp′ \ {vi, ui | i > k}, there are two following

particular cases. If p = p′, then we obtain tj ̸= tj′ according to (2’). Otherwise,

when p ̸= p′, we also reach the same conclusion by utilizing (4’);

• If tj ∈ {vi, ui | i > k} and tj′ ∈ Γp′ \ {vi, ui | i > k}, then we obtain tj ̸= tj′

obviously.

As a consequence, (ti)i≥0 is a ray. Finally, it is routine to verify that {vi | i ≥ 0} ∩ {ti |
i ≥ 0} and {ui | i ≥ 0} ∩ {ti | i ≥ 0} are infinite sets.

(ii) ⇒ (i): For each k ≥ 1, the hypothesis enables us to choose tik and tjk such that

tik ∈ (vi)i≥0 and tjk ∈ (ui)i≥0 and ik < jk < ik+1.

t0

(tz)0≤z≤i1

ti2−1 ti3−1

v0 · · · ti1

(tz)i1≤z≤j1

· · · · · · ti2 · · · · · · ti3 · · ·

u0 · · · tj1 · · · · · · tj2

(tz)i2≤x≤j2

· · · · · · tj3

(tz)i3≤z≤j3

· · ·

tj1+1 tj2+1 tj3+1
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We have the paths (tz)ik≤z≤jk ’s are disjoint because (ti)i≥0 is a ray. If F is a finite set that

can separate (vi)i≥0 and (ui)i≥0, then F must contain at least one vertex of each path

(tz)ik≤z≤jk for each k ≥ 1. As a consequence, F must be infinite, a contradiction! To sum

up, it must satisfy that (vi)i≥0 ≡ (ui)i≥0. The proof is completed.

Remark 1.1.15. By Proposition 1.1.14, we can realize that a ray (vi)i≥0 is usually end-

equivalent to its “tail” (vi)i≥k, for all k ≥ 0.

1.2 Group theory

1.2.1 Basic notions

Definition 1.2.1. A group G is a non-empty set, together with a binary operation ◦ :

G×G → G, namely a multiplication, such that the following axioms hold:

(i) The associative law : for every x, y, z ∈ G,

(x ◦ y) ◦ z = x ◦ (y ◦ z).

(ii) There is an unique element e ∈ G, called the identity , such that

e ◦ x = x ◦ e = x,

for every x ∈ G.

(iii) Each x ∈ G has an unique inverse which is an element y ∈ G satisfying

x ◦ y = y ◦ x = e.

We shall follow a custom of suppressing the symbol “ ◦ ” and writing either xy or x · y
in place of x ◦ y and call it the product of x and y. Furthermore, we denote the identity

and the inverse of each element x of a group G by 1 (or 1G) and x−1, respectively.

If the group G consists of finitely many elements, the number of its elements is called

the order of the group, denoted by |G|. Otherwise, we say that G is infinite.

Two elements x and y of a group G are said to commute if xy = yx. The center of a

group G, denoted by Z(G), is defined to be the set consisting of all elements commuting

with every elements of G, which means that

Z(G) = {z ∈ G | zx = xz for every x ∈ G}.
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A group G is called abelian if Z(G) = G.

Let G be a group and let x ∈ G. If there exists the smallest positive integer k satisfying

xk = 1, then k is called the order of x. Otherwise, we say that x has infinite order.

Example 1.2.2. The general linear group of degree n ≥ 2 over a field F, denoted by

GLn(F), is the set of n×n invertible matrices over the field F, together with the operation

of ordinary matrix multiplication. This forms a group with identity matrix as the identity

of the group, and the inverse of an element (being a matrix) is its ordinary inverse.

According to linear algebra, GLn(F) consists of all matrices with non-zero determinant

and it is non-abelian. The center of GLn(F) is the set of all scalar matrices of non-zero

determinant, which means that

Z(GLn(F)) = {αIn | α ∈ F∗}.

If F is infinite, then GLn(F) is obviously infinite for every n ≥ 2.

Otherwise, if |F| = q, then the order of GLn(F) is

n−1∏
k=0

(qn − qk) = (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1).

Definition 1.2.3. Let G be a group. A subset H of G is a subgroup if

(i) 1 ∈ H;

(ii) whenever x, y ∈ H, then xy ∈ H;

(iii) if x ∈ H, then x−1 ∈ H.

If H is a subgroup of G, then we write H ≤ G. It is obvious that {1} ≤ G, it is called

the trivial subgroup of G. On the other hand, G is also a subgroup of G itself. If the

subgroup H is different from G, then H is called a proper subgroup of G, denoted by

H < G.

Example 1.2.4. The special linear group of degree n over a field F, denoted by

SLn(F), is the set of n×n matrices with determinant 1, with the group operations of

ordinary multiplication and matrix inversion. This forms a subgroup of the general
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linear group of the same degree over the field F, i.e. SLn(F) ≤ GLn(F). When F
contains at least three elements, we have SLn(F) < GLn(F).

If F is infinite and n ≥ 2, then SLn(F) is infinite. Otherwise, if |F| = q and n ≥ 2,

then the order of SLn(F) is

1

q − 1

n−1∏
k=0

(qn − qk) =
1

q − 1
(qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1).

Proposition 1.2.5. (i) The intersection
⋂

i∈I Hi of any family of subgroups of a group

G is again a subgroup of G. In particular, if H,K ≤ G, then H ∩K ≤ G.

(ii) If Gi is a subgroup of a group G for every i ≥ 1 such that Gi ≤ Gj for all i ≤ j,

then their union
⋃

i≥1Gi is also a subgroup of G.

Proof. The proof is omitted on purpose.

Definition 1.2.6. Let G be a group and let X ⊆ G. We define ⟨X⟩ to be the intersection

of the family of all subgroups of G containing X.

We call that ⟨X⟩ is generated by X. If a subgroup of G is generated by a set of finitely

many elements, then the subgroup is said to be finitely generated .

For two subsets X and Y of a group G, we define the product of X and Y to be the

set XY = {xy | x ∈ X, y ∈ Y }. If H is a subgroup of G and x ∈ G, then xH and Hx

are called a left coset and a right coset of H in G, respectively. We denote the set of left

cosets of H in G by G/H.

Theorem 1.2.7 (Lagrange’s Theorem). If H is a subgroup of a finite group G, then |H|
divides |G|.

Proof. See [Ro10].

Definition 1.2.8. Let G be a group and let H ≤ G (H < G). If x−1Hx ⊆ H for every

x ∈ G, then H is a normal subgroup of G and we denote H ⊴ G (H ◁ G).

It is routine to verify an operation between left cosets of H in G that (xH)(yH) =

(xyH) for every x, y ∈ G. This is the motivation for establishing the following definition.

13



Definition and Proposition 1.2.9. Let H be a normal subgroup of a group G. The set

G/H equipped with the above operation is a group called the quotient group of G mod

H. The identity of G/H is H and the inverse of a coset xH is x−1H.

Proof. See [Ro10].

Definition 1.2.10. Let (G, ◦) and (G′, ◦′) be two groups. A mapping f : G → G′ is

called a group homomorphism (or homomorphism) if

f(x ◦ y) = f(x) ◦′ f(y), for every x, y ∈ G.

If a group homomorphism is a bijection, then it is called an (group) isomorphism. Two

groups G and G′ are called isomorphic , denoted by G ≃ G′, if there is an isomorphism

between them.

We define the kernel of f to be Kerf = {x ∈ G | f(x) = 1G′}, and the image of f to

be Imf = {f(x) | x ∈ G}.

Proposition 1.2.11. Let f : G → G′ be a homomorphism. Then we have following

results:

(i) Imf ≤ G′ and Kerf ⊴ G;

(ii) f is injective if and only if Kerf = {1G};

(iii) G/Kerf ≃ Imf .

Proof. See [Ro10].

Definition 1.2.12. Let G be a group and let x ∈ G. Then the group ⟨x⟩ := {xn | n ∈ Z}
is called a cyclic subgroup of G generated by x. A group G is called cyclic if G = ⟨x⟩ for
some x ∈ G. In this case, x is called a generator of G.

Proposition 1.2.13. (i) Every group of prime order is cyclic.

(ii) Let G be a finite group and let x ∈ G. Then the order of ⟨x⟩ is the order of x and

is a divisor of |G|.

(iii) If G = ⟨x⟩ is a cyclic group of order n, then G = ⟨xk⟩ if and only if (n, k) = 1.

14



(iv) A cyclic group G of order n has an unique subgroup of order d for every divisor d

of n.

Proof. See [Ro10].

1.2.2 Noetherian groups

Definition 1.2.14. A group G is said to satisfy the ascending chain condition (ACC) if

every ascending chain of subgroups

G1 ≤ G2 ≤ · · · ≤ Gn ≤ · · ·

stops, which means that there is an integer k such that Gk = Gk+1 = Gk+2 = · · · .

Definition and Proposition 1.2.15. For a group G, the following conditions are equiv-

alent:

(i) G satisfies the ACC ;

(ii) G satisfies the maximum condition: Every nonempty family M of subgroups of G

has a maximal element, which means that there is some H ∈ M such that there is

no K ∈ M with H < K;

(iii) Every subgroup of G is finitely generated.

If the group G satisfies these conditions, then G is called a Noetherian group.

Proof. (i) ⇒ (ii): Let M be a nonempty family of subgroups of G and assume that M
does not have any maximal element. We are going to construct inductively an ascending

chain of subgroups in M. Choose H1 ∈ M. For i ≥ 1, since Hi is not a maximal element

in M, there exists Hi+1 ∈ M such that Hi < Hi+1. As a result, we obtain an ascending

chain

H1 < H2 < · · · < Hn < · · ·

of subgroups of G. However, the chain does not stop, which contradicts the ACC.

(ii)⇒ (iii): ForH ≤ G, we defineM to be the family of all finitely generated subgroups

of H. Since ⟨1⟩ ≤ H, we have ⟨1⟩ ∈ M, so M ≠ ∅. By the hypothesis, there exists a

maximal element K of M. If K < H, then there is some element h ∈ H \K, implying
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K < ⟨K,h⟩ ≤ H. On the other hand, K is finitely generated, so is ⟨K,h⟩, which enables

⟨K,h⟩ to belong to M. This contradicts the maximality of K. As a result, it must satisfy

that K = H, so H is finitely generated.

(iii) ⇒ (i): Let

H1 ≤ H2 ≤ · · · ≤ Hn ≤ · · ·

be an ascending chain of subgroups of G. By (ii) of Proposition 1.2.5, the union set

H =
⋃
i≥1

Hi

is a subgroup of G. By the hypothesis, H is finitely generated by a set of elements

h1, . . . , hq. As a result, there are some subgroupHni
such that hi ∈ Hni

for every 1 ≤ i ≤ q.

Choose N being greater than all ni’s. We obtain that hi ∈ HN for all 1 ≤ i ≤ q, which

implies H ≤ HN . Therefore, H = HN , or equivalently HN = HN+1 = · · · . The proof is

completed.
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Chapter 2

Intersection graphs of general linear
groups

At the beginning of this chapter, we recall two results in field theory.

Proposition 2.0.1. Let F be a finite field. Then |F| = pm for some m ≥ 1 where p is the

characteristic of F.

Proof. See [Ro10].

Proposition 2.0.2. If F is a field and G is a finite subgroup of the multiplicative group

F∗, then G is cyclic. In particular, if F is finite, then F∗ is a cyclic group. In this case, a

generator of F∗ is called a primitive element of F.

Proof. See [Ro10].

2.1 The completeness of intersection graphs of

groups

First of all, let us pay attention to the definition of intersection graphs of groups, the

main object of the dissertation.

Definition 2.1.1. Let G be a (not necessarily finite) group. The intersection graph of

G, denoted by Γ(G) = (VG, EG), is the graph defined as follows:

(i) The set of vertices VG consists of all non-trivial proper subgroups of G;

(ii) For A,B ∈ VG, A,B are adjacent if and only if A ̸= B and A ∩B ̸= {1}.
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Remark 2.1.2. Only if the set of vertices VG has more than one vertex is the intersection

graph Γ(G) established. This means that G has more than one non-trivial proper sub-

group. In order to ensure the necessary condition, the order of G is not a prime number,

nor is it the square of a prime number.

The relation between subgroups of prime order of a finite groupG and the completeness

of its intersection graph is illustrated in the following proposition.

Proposition 2.1.3. The intersection graph of a non-trivial finite group G is complete if

and only if G has only one subgroup of prime order.

Proof. If G has only one subgroup H of prime order, then every non-trivial proper sub-

group of G contains H. Therefore, the intersection of every two distinct non-trivial proper

subgroups of G contains H. As a result, every two distinct vertices of Γ(G) are adjacent.

Conversely, assume that Γ(G) is complete. If there are two distinct non-trivial sub-

groups H1 and H2 of prime order, then H1 ∩ H2 = {1}. Therefore, H1 and H2 are

not adjacent, which contradicts the completeness of Γ(G). As a result, G has only one

subgroup of prime order. The proof is completed.

From the later section, we can realize that the subgroups of prime order can be con-

sidered as the skeleton of big picture of the dissertation (except the last section about

infinite intersection graphs).

Every group we consider for the rest of the dissertation has more than one group of

prime order. By Proposition 2.1.3, its intersection graph is not complete, and we also

have a result related to the diameter of the intersection graph in this case.

Proposition 2.1.4. For a finite group G, if Γ(G) is connected and not complete, then

δ(Γ(G)) = max{d(A,B) | A,B ∈ VG of prime order}.

Proof. Because G is finite, Γ(G) is also finite, which enables us to obtain the equality

δ(Γ(G)) = sup{d(U, V ) | U, V ∈ VG} = max{d(U, V ) | U, V ∈ VG} = n ≥ 2.

This means that there are two vertices U and V of Γ(G) whose distance equals the

diameter of Γ(G). We write the shortest path between U and V :

U = V0 V1 V2 · · · Vn−2 Vn−1 Vn = V.
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We need to show that there exist two non-trivial proper subgroups A and B of G whose

orders are prime numbers such that d(A,B) = n.

Since U ∩V1 > {1}, we have a subgroup A of V0∩V1 such that A has the prime order.

Similarly, we have a subgroup B ≤ Vn−1 ∩ Vn of prime order.

U = V0 V1 V2 · · · Vn−2 Vn−1 Vn = V

A B

It is routine to verify that d(A,B) ≤ d(U, V ) = n. We claim that d(A,B) = n. In fact, if

there is a path between A and B whose length is k < n as follows:

U = V0 V1 V2 · · · Vn−2 Vn−1 Vn = V

A B1 · · · · · · · · · Bk−1 B

Since A and B are prime-order groups, we have A ≤ B1 and B ≤ Bk−1, which implies

U ∩B1 ≥ A and V ∩Bk−1 ≥ B. Therefore, U and B1 are adjacent as well as V and Bk−1.

U = V0 V1 V2 · · · Vn−2 Vn−1 Vn = V

A B1 · · · · · · · · · Bk−1 B

By replacing edges A − B1 and B − Bk−1 with V0 − B1 and Vn − Bk−1, respectively, we

obtain a path from U to V whose length is k < n

U = V0 B1 · · · Bk−1 V,

which contradicts the minimum length of the first path. To sum up, d(A,B) = n =

δ(Γ(G)).

Remark 2.1.5. In the above proof, there is an argument that we utilize the hypothesis

that Γ(G) is not complete. By reviewing carefully, we realize that it is possible to replace

edges in order to obtain the last path only if there exist these edges, or equivalently

there exist intermediate vertices B1 and Bk−1 between A and B. This means A ̸= Bk−1

and B1 ̸= B, or equivalently A and B are not adjacent. This does not occur because
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A ∩B ⊆ U ∩ V = {1}. To sum up, the last path of length k will not exist and the above

proof will be wrong unless we have the hypothesis.

On the other hand, we can also verify routinely that the statement of Proposition 2.1.4

is wrong if we removing the hypothesis. In fact, if Γ(G) is complete, then δ(Γ(G)) = 1

and the maximum distance between two vertices of prime order is 0 (since G has only one

proper subgroup of prime order).

2.2 The diameter of Γ(GLn(F)) over a finite field F

It is routine to verify that the group GLn(F) has more than one non-trivial proper sub-

group when F is a field containing at least three elements and n ≥ 2. This allows us to

establish its intersection graph.

In previous chapter, we knew that the diameter of a graph is defined only if this

graph is connected. Therefore, it is necessary to show Γ(GLn(F)) is connected. In the

following theorem, we not only prove this statement, but also indicate the structure of the

intersection graph. To be more specific, we can regard the intersection graph of GLn(F)
as a “circle” and the special linear graph SLn(F) as its “center” with the radius being 2.

Theorem 2.2.1. If F is a finite field containing at least three elements and n ≥ 2, then

d(A, SLn(F)) ≤ 2 for every A ∈ VGLn(F). As a direct consequence, Γ(GLn(F)) is connected.

Proof. Since F contains at least three elements, SLn(F) is a non-trivial proper subgroup

of GLn(F), which means that SLn(F) ∈ VGLn(F). Let A be a non-trivial proper subgroup

different from SLn(F). We claim that d(A, SLn(F)) ≤ 2. We are going to prove this

statement through following steps:

Step 1 : We narrow the range of subgroups that be considered. It is sufficient to focus

on cases in which A ∩ SLn(F) = {In}, otherwise d(A, SLn(F)) = 1. In addition, for any

elements a ∈ A \ {In} and b ∈ SLn(F) \ {In}, if ⟨a, b⟩ < GLn(F), then we obtain the

following path

A ⟨a, b⟩ SLn(F).

Thus, we also have d(A, SLn(F)) ≤ 2. As a result, we concentrate on possible remaining

cases in which A ∩ SLn(F) = {In} and GLn(F) = ⟨a, b⟩ for every a ∈ A \ {In} and

b ∈ SLn(F) \ {In}.
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Step 2 : We research the structure of A. Via the surjective homomorphism

det : GLn(F) → F∗

M 7→ det(M),

we obtain that F∗ = ⟨det(a), det(b)⟩ = ⟨det(a)⟩ for every a ∈ A \ {In}.
Let q be a prime divisor of |F∗|. If aq ̸= In, then F∗ = ⟨det(aq)⟩ = ⟨det(a)q⟩. However,

this case does not appear because (q, |F∗|) = q by (iii) of Proposition 1.2.13. Therefore,

aq = In for every a ∈ A \ {In}.
Now, we fix an element a ∈ A \ {In}. For every a1 ∈ A, there is an integer l such that

det(a1) = det(a)l as F∗ = ⟨det(a)⟩, which implies that det(a1a
−l) = 1, or equivalently

a1a
−l ∈ SLn(F). The condition that A∩ SLn(F) = {In} allows a1a

−l = In, or equivalently

a1 ∈ ⟨a⟩. Thus, it must satisfy that A = ⟨a⟩, a group of prime order q.

Step 3 : We find an intermediate vertex that can be adjacent to both A and SLn(F).
Since GLn(F) = ⟨a, b⟩ = ⟨ai, b⟩ is non-abelian for every 1 ≤ i ≤ q − 1, we have ai does

not belong to Z(GLn(F)), so A ∩ Z(GLn(F)) = {In}. As a consequence, by putting

B = ⟨A,Z(GLn(F))⟩, an abelian group, we obtain that A < B < GLn(F). This means

that B is a vertex of Γ(GLn(F)) and adjacent to A.

Step 4 : We claim that B and SLn(F) are adjacent. It is obvious that B ̸= SLn(F) as
a /∈ SLn(F). There are two following cases according to whether q is a divisor of n or not.

If q is a divisor of n, then the determinant of an element det(a)In ∈ Z(GLn(F)) is

det(a)n = 1. Thus, In ̸= det(a)In ∈ B ∩ SLn(F), so B and SLn(F) are adjacent.

Otherwise, q is not a divisor of n, which implies that (q, n) = 1 because q is a

prime number. As a result, there exist u, v ∈ Z such that uq + vn = 1. Now,

we consider an element a · (det(a)−vIn) ∈ B whose determinant is det(a) det(a−vn) =

det(a1−vn) = det(auq) = 1, so a det(a)−vIn ∈ SLn(F). The fact that a /∈ Z(GLn(F))
implies a(det(a)−vIn) ̸= In. Therefore, we obtain B ∩ SLn(F) ̸= {In}.

After considering both cases, we usually obtain the path

A B SLn(F).

To sum up, d(A, SLn(F)) ≤ 2 for every A ∈ VGLn(F) and A ̸= SLn(F). The consequence

that Γ(GLn(F)) is connected can be implied straightforwardly.

21



Theorem 2.2.1 allows us to show the diameter of Γ(GLn(F)) is at most 4 straightfor-

wardly. Meanwhile, we can prove a greater inequality, with the supremum of δ(Γ(GLn(F)))
being 3, in the following theorem.

Theorem 2.2.2. If F is a finite field containing at least three elements and n > 1, then

2 ≤ δ(Γ(GLn(F))) ≤ 3.

Proof. Since F is finite, GLn(F) is finite. We are going to show the theorem through steps.

Step 1 : We claim that GLn(F) is not complete. In fact, put c = In+e12 and d = In+e21

where eij is the matrix whose (i, j)-th entry is 1 and all other entries are zeros. For

p = Char(F), it is routine to verify that ⟨c⟩ = {In + me12 | 0 ≤ m ≤ p − 1} and

⟨d⟩ = {In +me21 | 0 ≤ m ≤ p− 1}. This implies that ⟨c⟩ ∩ ⟨d⟩ = {In}. Thus, ⟨c⟩ and ⟨d⟩
are not adjacent, or equivalently δ(Γ(GLn(F))) ≥ 2.

Step 2 : We claim that d(A,B) ≤ 3 for every two distinct non-trivial proper

subgroups A,B of prime order of GLn(F). Put A1 = ⟨A,Z(GLn(F))⟩ > {In} and

B1 = ⟨B,Z(GLn(F))⟩ > {In}. It is obvious that A1 and B1 are abelian, which im-

plies both A1 and B1 differ from GLn(F) because GLn(F) is non-abelian. We have just

shown that A1, B1 ∈ VGLn(F). It is routine to verify that we have the (not necessarily

simple) path

A A1 B1 B.

As a result, we obtain d(A,B) ≤ 3 for every subgroups A and B of prime order.

Step 3 : We find possible values of the diameter of the graph. By the conclusion of

previous steps and Proposition 2.1.4, the diameter of Γ(GLn(F)) is at most 3. To sum

up, we have δ(Γ(GLn(F))) ∈ {2, 3}.

A question raise naturally is if we could make the inequality in Theorem 2.2.2 stricter

since if we can, we know the precise value of the diameter. The answer is it’s not possible

to find a stricter one and we are going to show this statement by providing some examples

in the later section.
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2.3 A sufficient condition determining the diameter

of Γ(GLn(F))

Theorem 2.2.2 enables us to know that the diameter of a general linear group is either 2

or 3. Meanwhile, it has been impossible to verify what δ(Γ(GLn(F))) is exactly for each

number n and each field F. In the dissertation, we only can establish general criteria for

measuring the diameter of the intersection graphs of GLn(F).

Theorem 2.3.1. Let F be a finite field containing at least three elements and let n ≥ 2.

Then, δ(Γ(GLn(F))) = 3 if and only if GLn(F) is generated by two elements of prime

order.

Proof. Assume that δ(Γ(GLn(F))) = 3. By Proposition 2.1.4, there exist two non-trivial

proper subgroups A,B of prime order such that d(A,B) = 3. If ⟨A,B⟩ < GLn(F), then
we have the following path

A ⟨A,B⟩ B,

so d(A,B) ≤ 2, a contradiction! As a result, ⟨A,B⟩ = GLn(F).
Conversely, assume that GLn(F) = ⟨A,B⟩, where A,B are non-trivial proper sub-

groups of prime order.

If d(A,B) = 1, which means that A ∩ B ̸= {In}, then A = B because of their prime

orders. Thus, GLn(F) = ⟨A⟩ is a cyclic group, a contradiction!

If d(A,B) = 2, then there exists a non-trivial proper subgroup G of GLn(F) such that

G is adjacent to both A and B. This means that G ∩A > {In} and G ∩B > {In}. Since
A and B are groups of prime order, we obtain that A ≤ G and B ≤ G, so ⟨A,B⟩ ≤ G.

Therefore, it must satisfy GLn(F) ≤ G, a contradiction!

Therefore, d(A,B) ≥ 3, and by Theorem 2.2.2, we obtain δ(Γ(GLn(F))) = 3.

We have a direct corollary of Theorem 2.3.1 that is helpful for us to verify many cases

in the next section.

Corollary 2.3.2. Let F be a finite field containing at least three elements and let n ≥ 2.

If the multiplicative group F∗ ̸= ⟨α, β⟩ for every elements α, β ∈ F∗ of prime order, then

δ(Γ(GLn(F))) = 2.
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Proof. Because the determinant of a matrix of prime order is either one or an element

of prime order, the hypothesis implies GLn(F) is not generated by two elements of prime

order via the homomorphism det. By Theorem 2.3.1, we obtain that δ(Γ(GLn(F))) ̸= 3,

or equivalently δ(Γ(GLn(F))) = 2 by Theorem 2.2.2. The proof is completed.

2.4 Exemplifying some types of GLn(F) according to

δ(Γ(GLn(F)))

Now, we utilize Theorem 2.3.1 and Corollary 2.3.2 to measure the diameters of the in-

tersection graphs of some general linear groups. For this purpose, we verify some groups

that are generated by exactly two elements of prime order. The first one is GL2(Z/3Z).

Lemma 2.4.1. The group GL2(Z/3Z) is generated by two elements

[
−1 0
0 1

]
and[

−1 1
−1 0

]
.

Proof. Put a =

[
−1 0
0 1

]
and b =

[
−1 1
−1 0

]
, and x(z) =

[
1 z
0 1

]
, y(z) =

[
1 0
z 1

]
, where

z ∈ Z/3Z = {0,±1}. We obtain an inclusion that ⟨x(z), y(z) | z ∈ Z/3Z⟩ ≤ ⟨a, b⟩ because
of the equalities

x(1) = b2ab2ab;x(−1) = b2abab; y(1) = babab2; y(−1) = bab2ab2;x(0) = y(0) = In.

Afterwards, we claim that SL2(Z/3Z) is a subgroup of ⟨x(z), y(z) | z ∈ Z/3Z⟩. In fact,

we have the form of each element of SL2(Z/3Z) is one of two cases:[
r (rh− 1)s
s−1 h

]
,

[
s t
0 s−1

]
,

where r, h, t ∈ {0,±1} and s ∈ {±1}. By performing many calculations, we obtain[
r (rh− 1)s
s−1 h

]
= x(rs) ·x(−1) ·y(1) ·x(−1) ·x(−s) ·y(s) ·x(−s) ·x(1) ·y(−1) ·x(1) ·x(hs),

[
s t
0 s−1

]
= x(st) · x(−1) · y(1) · x(−1) · x(s) · y(−s) · x(s).

As a consequence,

SL2(Z/3Z) ≤ ⟨x(z), y(z) | z ∈ Z/3Z⟩.
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As a result, we have the inclusion SL2(Z/3Z) ≤ ⟨a, b⟩. In addition, since a /∈ SL2(Z/3Z),
it must satisfy that SL2(Z/3Z) < ⟨a, b⟩.

Furthermore, the fact that |GL2(Z/3Z)
SL2(Z/3Z) | = |(Z/3Z)∗| = 2 results in GL2(Z/3Z) = ⟨a, b⟩.

The proof is completed.

Proposition 2.4.2. δ(Γ(GL2(Z/3Z))) = 3.

Proof. It is routine to verify that a2 = b3 = I2 where a =

[
−1 0
0 1

]
and b =

[
−1 1
−1 0

]
.

Combining Lemma 2.4.1 with Theorem 2.3.1, we obtain that δ(Γ(GL2(Z/3Z))) = 3.

Another general linear group generated by only two elements of prime order is GL2(F)
such that the order of F∗ is a Mersenne prime, the prime number is of the form 2t − 1,

t ∈ N. People have discovered 51 Mersenne primes through over 2000 years. This means

that we have had 51 particular instances of the general form.

Lemma 2.4.3. Let F be a finite field of characteristic 2 containing at least 3 elements such

that the order of the multiplicative group F∗ is a prime number. If λ is a primitive element

of F, then GL2(F) is generated by

[
λ 0
0 1

]
and

[
1 1
1 0

]
. As a result, δ(Γ(GL2(F))) = 3.

Proof. Put a =

[
λ 0
0 1

]
and b =

[
1 1
1 0

]
. By [Wat89], there exist α, β, γ ∈ F∗ such that

GL2(F) is generated by

[
α 0
0 1

]
and

[
0 β
1 γ

]
. Thus, it is sufficient to show that

[
α 0
0 1

]
and[

0 β
1 γ

]
belong to ⟨a, b⟩ for every α, β, γ ∈ F∗. In fact, since F∗ = ⟨λ⟩ and at =

[
λt 0
0 1

]
for every 0 ≤ t ≤ |F∗| − 1, we have

[
α 0
0 1

]
∈ ⟨a⟩ ≤ ⟨a, b⟩ for every α ∈ F∗. On the other

hand, it is routine to check that

a−4bab2a2ba2b2a2bab2 =

[
1 0
0 λ4

]
.

Since the order of λ is |F∗|, an odd number, and (4, |F∗|) = 1, the element λ4 is also a

primitive element of F∗. Thus,[
1 0
0 γ

]
∈
〈[

1 0
0 λ4

]〉
≤ ⟨a, b⟩

for every γ ∈ F∗. Therefore, for every β, γ ∈ F∗,[
0 β
1 γ

]
=

[
βγ−1 0
0 1

]
b−1

[
1 0
0 γ

]
∈ ⟨a, b⟩.
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We have just shown that GL2(F) = ⟨a, b⟩. It is routine to check that a|F
∗| = b3 = I2, so

δ(Γ(GL2(F))) = 3 by Theorem 2.3.1. The proof is completed.

Next, we mention the definition of the prime omega function, the function counting

the total number of prime factors (with multiplicity) of a natural numbers greater than 1

with the aim of expressing Theorem 2.4.5.

Definition 2.4.4. The prime Omega function, denoted by Ω, is defined as follows: for

every integer n greater than 1 with its prime decomposition is
∏t

i=1 p
ki
i , the prime Omega

function of n is Ω(n) =
∑t

i=1 ki.

Now, we reach the main theorem of the section which indicates some cases of F and n

in which δ(Γ(GLn(F))) is determined exactly.

Theorem 2.4.5. Let F be a finite field containing at least three elements and n ≥ 2. Then

we have the following conclusions of the diameter of the intersection graph of GLn(F):

(i) If Ω(|F∗|) ≥ 3, then δ(Γ(GLn(F))) = 2;

(ii) If Ω(|F∗|) = 2 and |F∗| = h2 for some prime number h, then δ(Γ(GLn(F))) = 2;

(iii) If Ω(|F∗|) = 1, then δ(Γ(GL2(F))) = 3.

Proof. (i) For arbitrary α and β are elements of F∗ with orders being prime numbers

h and k, respectively, the order of ⟨α, β⟩ is either h (when α ∈ ⟨β⟩) or hk (when

α /∈ ⟨β⟩). In both cases, we have Ω(|⟨α, β⟩|) ≤ 2 < Ω(|F∗|), which results in

F∗ ̸= ⟨α, β⟩. By Corollary 2.3.2, we obtain δ(Γ(GLn(F))) = 2.

(ii) Similarly, we aim to show that Ω(|⟨α, β⟩|) = 1 < Ω(|F∗|). In fact, if α and β are

elements of prime order, then their orders are h each by (ii) of Proposition 1.2.13. As

a result, we have ⟨α⟩ = ⟨β⟩ as F∗ is cyclic (by (iv) of Proposition 1.2.13). Therefore,

we have Ω(⟨α, β⟩) = Ω(⟨α⟩) = Ω(h) = 1.

(iii) Let p = Char(F) and write |F| = pn for some n ∈ N. The condition Ω(|F∗|) = 1 is

equivalent to pn − 1 is a prime number. If p > 2, then pn − 1 is even, which implies

that pn − 1 = 2, or equivalently p = 3 and n = 1. In this case, F ≃ Z/3Z. By

26



Proposition 2.4.2, we have δ(Γ(GL2(F))) = 3. Otherwise, when p = 2, by Lemma

2.4.3, we also reach the same conclusion.

There are many fields F such that Ω(|F∗|) ≥ 3. However, Z/5Z (up to an isomorphism)

is an unique group satisfying (ii) of Theorem 2.4.5. As for the last conclusion, there have

been 52 groups satisfying (iii), including Z/3Z and 51 groups related to Mersenne primes.

Theorem 2.4.5 shows the inequality in Theorem 2.2.2 is as strict as possible.

2.5 End-equivalence of Γ(GLn(F)) when F is infinite

For infinite field F, the diameter of Γ(GLn(F)) is exactly 2 (Proposition 2.5.2). In the

order words, the problem related to diameter of the intersection graphs is handled totally.

Lemma 2.5.1. Every general linear group of degree greater than 1 over an infinite field

is infinitely generated. As a direct result, the intersection graph of the group is infinite.

Proof. This is a particular case of [NBH17, Theorem 5.4].

Proposition 2.5.2. The intersection graph of any general linear group of degree n greater

than 1 over an infinite field F is connected with the diameter being 2.

Proof. Let A and B be two distinct non-trivial proper subgroups of GLn(F). If either

A ⊆ B or B ⊆ A, then A ∩ B ̸= {In}, which allows A and B to be adjacent. Otherwise,

since A ⊈ B and B ⊈ A, there exist a ∈ A \ B and b ∈ B \ A. By Lemma 2.5.1, we

have ⟨a, b⟩ ≠ GLn(F), which means that ⟨a, b⟩ is a vertex of Γ(GLn(F)). The fact that

{In} < ⟨a⟩ ≤ A ∩ ⟨a, b⟩ and {In} < ⟨b⟩ ≤ B ∩ ⟨a, b⟩ implies straightforwardly

A ⟨a, b⟩ B.

Therefore, d(A,B) ≤ 2 for every distinct non-trivial proper subgroups A,B of GLn(F),
which means that Γ(GLn(F)) is connected and its diameter is at most 2.

We need to prove that δ(Γ(GLn(F))) = 2 by indicating two vertices whose distance is

2. In fact, we consider two non-trivial proper subgroups U = {In + me12 | m ∈ F} and

V = {In+me21 | m ∈ F}. It is routine to verify U∩V = {In}, or equivalently d(U, V ) ≥ 2.

To sum up, δ(Γ(GLn(F))) = 2.
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In order to broadening perspective on cases of infinite groups, we investigate a charac-

teristic of infinite graphs, this is the end-equivalence relation of rays of Γ(GLn(F)) (The-
orem 2.5.4). As well as the important role of groups of prime order in previous sections,

the infinitely generated groups is the kernel of the proofs of two following results.

Lemma 2.5.3. If G is a non-Noetherian group, then Γ(G) contains infinitely many dis-

joint rays.

Proof. By Proposition 1.2.15, there exists an infinite chain of non-trivial subgroups of G

as follows

G1 < G2 < G3 < · · · < Gn < · · · .

Denote by pi the i-th prime number. We obtain a ray

Γi : Gpi Gp2i
Gp3i

· · · Gpni
· · ·,

for each i. Since there is no power of pi being a power of pj when i ̸= j, Γi and Γj are

disjoint. It is well-known that there are infinitely many prime numbers, which implies

there are infinitely many rays Γi’s.

Now, we reach the main theorem ending the dissertation.

Theorem 2.5.4. If F is an infinite field and n ≥ 2, then Γ(GLn(F)) is one-ended and

the end is thick.

Proof. By Lemma 2.5.1, GLn(F) is infinitely generated. Therefore, by Proposition 1.2.15,

we obtain that GLn(F) is non-Noetherian, so Γ(GLn(F)) has infinitely many disjoint rays

by Lemma 2.5.3. According to Definition 1.1.13, it is sufficient to show that all rays of

Γ(GLn(F)) are end-equivalent. Let (Ai)i≥0 and (Bi)i≥0 be two arbitrary rays of Γ(GLn(F)).

A0 A1 A2 · · · An · · ·

B0 B1 B2 · · · Bn · · ·

We are going to show (Ai)i≥0 ≡ (Bi)i≥0 by finding a ray (Ci)i≥0 of Γ(GLn(F)) that has

infinitely many vertices in common with (Ai)i≥0 as well as (Bi)i≥0 (Proposition 1.1.14).

All general cases of (Ai)i≥0 and (Bi)i≥0 can be considered as three particular cases:
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Case 1 : If {Ai | i ≥ 0} ∩ {Bi | i ≥ 0} is infinite, then (Ai)i≥0 ≡ (Bi)i≥0 since we can

choose Ci = Ai for all i ≥ 0.

Otherwise, we concentrate on cases in which {Ai | i ≥ 0}∩{Bi | i ≥ 0} is finite, which

means that there exists k ∈ N such that {Ai | i ≥ k} ∩ {Bi | i ≥ k} = ∅. The fact that

(Ai)i≥0 ≡ (Ai)i≥k (Remark 1.1.15) and the transitivity of end-equivalence (in Proposition

1.1.11) enables us to assume that {Ai | i ≥ 0}∩{Bi | i ≥ 0} = ∅ without loss of generality.

In the other words, two rays (Ai)i≥0 and (Bi)i≥0 are disjoint. With this assumption, we

have two following cases.

Case 2 : For each k ≥ 1, there exist i, j ≥ k such that Ai is adjacent to Bj. As a

result, we can choose two increasing infinite sequences of natural numbers (iz)z≥1 and

(jz)z≥1 such that Aiz and Bjz are adjacent for every z ≥ 1.

A0 · · · Ai1 · · · Ai2 · · · Ai3 · · ·

B0 · · · Bj1 · · · Bj2 · · · Bj3 · · ·

We choose the path (Ci)i≥0 which is

(Ai1 Bj1) ◦ (Bz)j1≤z≤j2 ◦ (Bj2 Ai2) ◦ (Az)i2≤z≤i3 ◦ (Ai3 Bj3) ◦ · · ·.

Since {Ai | i ≥ 0} ∩ {Bi | i ≥ 0} = ∅, all elements of (Ci)i≥0 are distinct, or equivalently

(Ci)i≥0 is a ray. It is routine to verify that {Ci | i ≥ 0} ∩ {Ai | i ≥ 0} is infinite as well

as {Ci | i ≥ 0} ∩ {Bi | i ≥ 0}. By Proposition 1.1.14, we have (Ai)i≥0 ≡ (Bi)i≥0.

Case 3 : If there exists k ≥ 0 such that Ai and Bj are not adjacent for every i, j ≥ k.

Repetition of the above argument allows us to assume that Ai and Bj are not adjacent for

every i, j ≥ 0, without loss of generality. With this additional assumption, we are going

to construct an intermediate ray (Di)i≥0 by induction.

Because Ai and Bi are not adjacent, we have Ai ⊈ Bi and Bi ⊈ Ai, which enables us

to choose ai ∈ Ai \Bi and bi ∈ Bi \Ai for every i ≥ 0. Put d0 = In and D0 = ⟨a0, b0⟩. For
each i ≥ 0, we assume that the subgroup Di was finitely generated. As a result, we obtain

Di < GLn(F) (by Lemma 2.5.1), which enables us to choose an element di+1 ∈ GLn(F)\Di.

Then, we put

Di+1 = ⟨Di, ai+1, bi+1, di+1⟩.
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As a result, Di+1 is also finitely generated, so we can construct the chain (Di)i≥0 induc-

tively.

Now, we list some properties of the chain (Di)i≥0.

(i) We obtain that D0 < D1 < D2 < · · · , because di+1 /∈ Di. In particular, Di ̸= Dj

for every i ̸= j. As a result, the path

D0 D1 D2 · · ·

is a ray.

(ii) For every i ≥ 0, Di is adjacent to both Ai and Bi because ⟨ai⟩ ≤ Di ∩ Ai and

⟨bi⟩ ≤ Di ∩Bi.

A0 A1 A2 · · · An · · ·

D0 D1 D2 · · · Dn · · ·

B0 B1 B2 · · · Bn · · ·

(iii) Three rays (Di)i≥0, (Ai)i≥0 and (Bi)i≥0 are disjoint. In fact, if there exists z such

that Dz = Aj for some j ≥ 0, which implies Aj ∩ Bz = Dz ∩ Bz ̸= {In}. Thus, we

have either Aj = Bz or Aj and Bz are adjacent, which contradicts two assumptions

of this case. As a result, (Di)i≥0 and (Ai)i≥0 are disjoint. For (Di)i≥0 and (Bi)i≥0,

we show similarly.

Finally, we choose a path (Ci)i≥0 as follows

(Ci)i≥0 = A0 D0 B0 B1 D1 A1 A2 D2 B2 · · ·.

By the properties (i) and (iii), all elements of (Ci)i≥0 are distinct, or equivalently (Ci)i≥0

is a ray. In addition, we have that both sets {Ci | i ≥ 0} ∩ {Ai | i ≥ 0} and {Ci | i ≥
0} ∩ {Bi | i ≥ 0} are infinite. Therefore, (Ai)i≥0 ≡ (Bi)i≥0 by Proposition 1.1.14. The

proof is completed.
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